
Date and time: Monday, Jun. 20, 2022 4th period (14:35-16:05)

Place: Engineering A3-131

Lecturer: Prof. Sanket Goel (MEMS, Microfluidics and Nanoelectronics (MMNE) Lab, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, India)

Turnkey Laser Ablation Method to Produce Graphene and Related Materials: Application to realize Smart Miniaturized Devices

With the advent of cyber-physical system-based automation and intelligence, the development of smart wearable devices has dramatically enhanced. Evidently, this has led to the thrust to realize standalone and sufficiently-self-powered miniaturized devices for a variety of sensing and monitoring applications. To this end, a range of aspects needs to be carefully and synergistically optimized. These include choice of material, micro-reservoir to suitable place the analytes, integrable electrodes. detection mechanism. microprocessor/microcontroller architecture, signal-processing, software etc. In this context, MMNE Lab is working towards developing novel flexible devices having micro-reservoir, both in flow-through and stationary phase, integrated with graphanized zones created by simple benchtop laser. Various substrates, like different kinds of cloths, papers and polymers, have been harnessed to developed laser-ablated graphene regions alongwith micro-reservoir to aptly place various analytes to be sensed/monitored. Likewise, similar substrates have been utilized for energy harvesting by fuel-cell or solar routes, and supercapacitor-based energy storage. Overall, realization of a prototype is envisioned by integrating various sub-systems, including sensory, energy harvesting, energy storage and IoT sub-systems, on a single miniplatform. During the presentation, our work towards developing such prototypes will be showcased, and current and future commercialization potential will be projected.

Contact: Prof. Yukihiko Matsumura (mat@hiroshima-u.ac.jp)